When the post-COVID-19 era comes, the DC-DC converter applications will span a wide range of industries, including consumer electronics, medical, telecom/datacom, industrial, automotive, and railway rolling stock. The current growth at nearly 12% CAGR is accompanied by a strong push to save space, time, and cost toward application development.
The automotive industry’s evolution is leading to a growing demand for electric vehicles (EVs) that provide a more sustainable and environmentally friendly driving experience. However, to make EVs an affordable and accessible reality, the efficiency of the electronic components used for power conversion must be improved. In this context, 650V and 1200V high-power GaN devices are emerging as promising solutions.
Artificial intelligence (AI), a key driver for what is expected to be a trillion-dollar industry by 2030, is placing new focus on semiconductor performance. Some of the most complex problems in delivering next-generation AI capabilities come from device fabrication challenges that will need to be addressed by new etch technologies.
Power converter control plays a crucial role in optimizing the overall performance of power-conversion systems. With proper control, power converter efficiency can be maximized, energy losses reduced and component life improved. By designing sophisticated control algorithms, power transitions can be managed efficiently and optimally while keeping the power converter output voltage and current constant.
Robots have different applications in different markets and come in many forms, including service robots, collaborative robots (cobots), industrial robots, autonomous drones and autonomous guided vehicles. One of the key factors for the success of robotic applications is to ensure optimal motor driver design. Silicon-based motor drives require a compromise between efficiency and size.
The ease of use and convenience of electric vehicles is significantly affected by the way they are charged. Due to the limited number of high-power charging stations, a significant number of car owners still need to rely on on-board chargers (OBCs) to charge their electric vehicles. To improve the performance of on-board chargers, automakers are exploring new technologies such as carbonization (SiC). This technical article will explore the importance of in-car chargers and how advances in semiconductor switching technology are pushing the performance of in-car chargers to a whole new level.
With the advent of open floor plans for homes and offices and the growing shift to hybrid and electric vehicles, there is a growing need for quieter, more efficient motor control. Even very small acoustic differences can have a significant effect on audible noise.
The artificial intelligence (AI) revolution has arrived. With the public release of applications such as ChatGPT, people have been able to experience firsthand the power and potential of deep neural networks and machine learning (ML).
Traction inverters are the main component that consumes battery power in electric vehicles (EVs), with power levels up to 150kW or higher. The efficiency and performance of traction inverters directly affect the driving range of electric vehicles after a single charge. Therefore, in order to build the next generation of traction inverter systems, silicon carbide (SiC) field-effect transistors (FETs) are widely used in the industry to achieve higher reliability, efficiency and power density.
This paper will explore operational amplifiers suitable for electrochemical gas sensor applications such as ethanol and carbon monoxide (CO). The amplifier performance required for such applications will also be discussed to help ease portable devices accurately measure ethanol and CO with lower power consumption and better results.
This article will discuss the advantages and challenges of four battery chemical components (lithium ion, lithium iron phosphate, lithium polymer, and nickel-metal Hydride) in battery applications below 30V, and how battery charging ics for these battery types can improve battery performance, uptime, and service life in applications.
This article will explore the path to developing secure devices by introducing 13 best practices for iot security and how to implement these best practices in iot applications to ensure regulatory compliance
Leveraging the plug-and-play capabilities of NoC technology has become an effective strategy to accelerate the integration of RISC-V based systems, an approach that facilitates seamless connectivity between processor cores or clusters and IP blocks from multiple vendors.
Since 2000, the role of the sensor is to detect the physical signal and then provide it to the upper layer for use, so it is a single MEMS and analog front end, doing some digital circuit signal processing, and then directly converting the physical signal into an electrical signal to provide it, and the relative function is relatively single.
When we talk about time-of-flight (ToF) technology, the most important thing to consider is embedded vision technology, which has changed dramatically over the years. From its first theoretical formation in the 1970s until today, the technology's leap forward has ushered in a new era of advanced imaging for autonomous mobile robots (AMR). The most common use of AMR is in industrial warehouses, where ToF technology plays a key role in helping robots sense their surroundings with optimal accuracy.
5G network has the characteristics of high speed and low latency, and with the rapid development and deployment of 5G technology, the practicality of Vehicle networking (Vehicle-to-everything or Vehicle to X, V2X) has been improved, and the development speed of vehicle networking applications has also been accelerated.
In the process of achieving the "dual-carbon" goal of "carbon peaking" and "carbon neutrality", the widespread existence of iot devices is an important starting point. According to a report released by market research firm IoT Analytics, the number of global iot connections will reach 14.3 billion in 2022. That number is expected to grow another 16 percent to 16 billion by 2023.
In order to improve the portability of devices in the rapid development of high-speed 5G networks, related products are facing the challenge of miniaturization, and in every market, designers are facing an increasing demand for miniaturized devices, which means that internal connectors must also be made smaller. This article will explore the challenges of miniaturization across industries and the product features of miniaturized connectors introduced by Molex for 5G applications.